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• A(G ) is a (0,1)-symmetric matrix of size n × n.
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• Perfect matching : A matching which covers all the vertices.

If a graph has unique perfect matching, then we denote it by M.

• Let G be a graph with unique perfect matching M and let [u, v ] ∈ E (G ).

• The edge [u, v ] is called matching edge (resp. nonmatching )if [u, v ] in M
(resp. [u, v ] in M).
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Perfect Matching 3

• William Thomas Tutte supplied a necessary and sufficient condition for a
graph to have a perfect matching.

Once we have a graph with a perfect matching, then the following questions
are natural:

Q1 Can we find one perfect matching?

Yes. A famous algorithm of Jack Edmonds finds a perfect matching, if it
exists.

Q2 Can we count the number of perfect matchings?

No.
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Nonsingular Graph 4

Nonsingular Graph We say G is nonsingular to mean that A(G ) is nonsin-
gular.
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det(A) 6= 0
det(A) = 0

Open Problem Characterize the nonsingular graphs.

Godsil, 1985 Let G be a bipartite graph with a unique perfect matching.
Then G is nonsingular.

H The class of bipartite graphs with a unique perfect matching. We always
denote the matching by M.
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• Suppose that G is nonsingular. How does A(G )−1 look like?

• It can be a matrix without a negative entry, eg. P2.

• It can be a matrix with a negative entry, eg. P4.

Problem Characterize the nonsingular graphs G such that A(G )−1 is non-
negative.

Harary & Minc, 1976 Let G be a nonsingular graph. Then A(G )−1 is non-
negative if and if G = P2.
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Signature matrix A diagonal matrix S with diagonal entries from {1,−1}.

• [Godsil, 1985] Suppose that G is bipartite and G is nonsingular. Suppose
that, there exists a signature matrix S such that

A′ := SA(G )−1S ≥ 0 (entrywise nonnegative).

• Then A′ is the adjacency matrix of a ‘unique graph G+’.

• We call G+ the inverse graph of G and we say G is invertible.
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Hückel Graph
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H
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• The Hückel graph is used to model the molecular orbital energies of hydro-
carbon.

Yates 1978 It has been shown that many families of Hückel graphs are bi-
partite graphs with unique perfect matchings.

• The amount of energy to remove an electron from a hydrocarbon is corre-
lated with the least positive eigenvalue of the corresponding Hückel graph.



Inverses of graphs 9

• In 1978, Cvetkovic, Gutman and Simic have introduced the pseudo-inverse

graph of a graph. Let G be a graph. The pseudo-inverse graph PI (G ) of G

is a graph, defined on the same vertex set as G , and in which the vertices x

and y are adjacent if and only if G − x − y has a perfect matching.
For example the graph

for which PI (G ) = G and σ(G ) = σ(PI (G )) = {−2, 0, 0, 2}, but 1/λ ∈
σ(PI (G )) whenever λ ∈ σ(G ) is not true.
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• In 1988, Buckley, Doty and Harary have introduced the signed inverse graph
of a graph. A signed graph is a graph in which each edge has a positive or
negative sign, see [?]. An adjacency matrix of a signed graph is symmetric
and each entry is 0, 1, or −1. Let G be a nonsingular graph. The graph G

has a signed inverse if A(G )−1 is the adjacency matrix of some signed graph
H.
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• In 1990, Pavlikova and Jediny have introduced another notion of inverse
graph of a graph. The inverse graph of a nonsingular graph with the spec-
trum λ1, . . . , λn is a graph with the spectrum 1/λ1, . . . , 1/λn. This type of
inverse graph of a graph need not be unique.

One can construct a class of graphs which have more than one inverse graphs.
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• Let G ∈ H and P = [u1, u2, . . . , uk ] be a path.

• The path P is called an alternating path if the edges on P are alternately
matching and nonmatching edges.

• We say P is an mm-alternating path (matching-matching-alternating path)
if P is an alternating path and [u1, u2], [uk−1, uk ] ∈ M.

• We say P is an nn-alternating path (nonmatching-nonmatching-alternating
path) if P is an alternating path and [u1, u2], [uk−1, uk ] /∈ M.
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• Nonsingular trees are in the Godsil class. So they have inverses.

Godsil, 1985 Characterize graphs in H which have inverses.

Akbari & Kirkland, 2007 Characterized unicyclic graphs in H having in-
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Godsil 1985 Gave an interesting example of a graph with an inverse.
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• A satisfactory explanation remained to be found.
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• Take a bipartite graph G with a unique perfect matching.

• E is the set of all even type edges in G .

• By (G − E)/M denote the graph obtained by deleting all the even type
edges and then contracting each matching edge to a single vertex.

Panda & Pati, 2016 Let G be a bipartite graph with a unique perfect match-
ing such that G satisfies the following condition

1. G has no mixed type edges,

2. no two even type extensions at two distinct even type
edges have an odd type edge in common and,

Then G+ exists if and only if (G − E)/M is bipartite.
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• This graph satisfies the above hypothesis as, E = {[1, 2]} and (G −E)/M
is bipartite.
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• This graph satisfies the above hypothesis as, E = {[1, 2]} and (G −E)/M
is bipartite.
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• This graph satisfies the above hypothesis as, E = {[1, 2]} and (G −E)/M
is bipartite.
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i i1 2 Solid edges are
matching edges.

• Hence it has an inverse.

S. K. Panda and S. Pati, On some graphs which possess inverses, Linear
and Multilinear Algebra, 64(7)(2016), pp. 1445–1459.
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• This graph satisfies the above hypothesis as, E = {[1, 2]} and (G −E)/M
is bipartite.

j

j

j

k k

l

l

l

m m

n n

o o

p p1 2 Solid edges are
matching edges.

• Hence it has an inverse.

S. K. Panda and S. Pati, On some graphs which possess inverses, Linear
and Multilinear Algebra, 64(7)(2016), pp. 1445–1459.

• Graphs in H that have inverses are now characterized in Yang & Ye 2017.
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Godsil & Mckay, 1978

Property SR A nonsingular graph G is said to satisfy the

strong reciprocal eigenvalue property or property SR if 1/λ is an eigenvalue

of A(G ) whenever λ is an eigenvalue of A(G ) and both have the same
multiplicity.

Property R When the multiplicity condition is relaxed, we say G has the
reciprocal eigenvalue property or property R.
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Godsil & Mckay, 1978 Let T be a nonsingular tree.

T has property SR ≡ T is corona.

Barik & Pati, 2016 Let T be a nonsingular tree.

T has property R ≡ T is corona.

Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.

a) T has property SR.
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Godsil & Mckay, 1978 Let T be a nonsingular tree.

T has property SR ≡ T is corona.

Barik & Pati, 2016 Let T be a nonsingular tree.

T has property R ≡ T is corona.

Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.

a) T has property SR.

b) T has property R.
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Godsil & Mckay, 1978 Let T be a nonsingular tree.

T has property SR ≡ T is corona.

Barik & Pati, 2016 Let T be a nonsingular tree.

T has property R ≡ T is corona.

Combining a list of known results we have the following result.

Theorem Let T be a nonsingular tree. Then the following are equivalent.

a) T has property SR.

b) T has property R.

c) T is corona.
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Godsil & Mckay, 1978 Gave an interesting example of a graph with Property
SR.
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Solid edges are
matching edges.

• A satisfactory explanation remained to be found.
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2. no two even type extensions at two distinct even type
edges have an odd type edge in common and,
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4. (G − E)/M is bipartite.

Then the following are equivalent.

a) 1
ρ is the smallest positive eigenvalue G .

b) G is isomorphic to G+.
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Pati & Panda, 2017 Boxminus Corona Let H be a connected bipartite

corona graph. Let S be a subset of nonmatching edges of H such that
each cycle in H has an even number of edges from S .

Let boxminus corona H�

S be the graph created from H by adding two even
type extensions of length 3 at each edge e ∈ S .
This is same as replacing each [u, v ] ∈ S with the the following boxminus

graph.

u v
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Panda & Pati, 2017 Let G be a bipartite graph with a unique perfect match-
ing such that G satisfies the following condition

1. G has no mixed type edges,

2. no two even type extensions at two distinct even type
edges have an odd type edge in common and,

3. each even type edge has atleast two even type extensions,

4. (G − E)/M is bipartite.

Then the following are equivalent.

a) 1
ρ is the smallest positive eigenvalue G .

b) G is isomorphic to G+.

c) G has property SR.

d) G has property R. e) G is boxminus corona.
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• Open Problems

• Characterize the bipartite graphs with unique perfect matching which are
self inverse.

• Is there any bipartite graphs with unique perfect matching which satisfies
property R but not SR.

• Characterize the bipartite graphs with unique perfect matching which sat-
isfy property R.

• Characterize the bipartite graphs with unique perfect matching which sat-
isfy property SR.

• Characterize the self-inverse bipartite graphs with unique perfect matching
which satisfy property SR.
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